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Abstract-The values of the elastic constants are of fundamental importance in any study of the lattice 
vibrational excitations in crystals. They determine the dispersion relations in the non-dispersive region 
of the spectrum and from these, the low temperature limit of the Debye temperature. 

In a similar manner, the pressure dependencies of the elastic constants provide non-thermally deter­
mined data on the shift of these lattice vibrational energies with lattice compression, the so caned micro-
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normal mode frequencies and Vis the crystal volume. In the non dispersive region of the spectrum, simple 
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considerations yield )I m = "2 BT ~ - 6"' in which BT is the bulk modulus and P the pressure. The 

subscript m refers to a particular mode type, and Cm is the elastic constant associated with that mode 
of propagation. 

The quasi-harmonic oscillator model gives the result that the experimental Grilneisen constant defined 

by )I G == IX~ V , where IX is the volume coefficient of thermal expansion and the other terms have their 
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Einstein heat capacity of that mode at the temperature of observation. 
At the present time, the pressure dependencies of the elastic constants provide the only direct measure­

ments of the )I), Somewhat surprisingly their values, used with an elastic continuum approximation 
account quite well for)l G and its temperature dependence in many cases. The results ofthis approximation 
are discussed, and evidence is presented concerning the magnitude of the temperature dependence of the 
mode gammas, and the effects of a strong temperature dependence on the conclusions of the Quasi­
Harmonic Model. 

INTRODUCTION lation to Grtineisen's gamma: 

THE microscopic theory of the temperature de­
pendent equation of state of solids, introduces 
anharmonicity parameters of the form y} 3N 
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d In V where w} is a lattice vibrational 

mode frequency and Vis the crystal volume.(1.2) 
These "mode gammas" bear the following re-
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in which Cu} is the Einstein heat capacity of the 
j'th mode at the temperature of observation. The 
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G ·· . . d fi d b aBr V runelsen parameter IS e ne y: 'Y G = ---c::-
in which a is the volume coefficient of thermal 
expansion, Br is the bulk modulus, Cv/ V the 
heat capacity per unit volume of the crystal. In 
this quasi-harmonic oscillator model, the tem­
perature dependence of Griineisen's gamma 
arises in existence of different values of 'Yj for 
different modes, coupled with changes in their 
relative weights by the temperature dependent 
mode heat capacities. In the case that all gam­
mas were equal, one would expect on this model 
that Griineisen's gamma would be rigorously 
temperature independent. In the most general 
spectral case, one would expect constancy of 'YG 
in the limit of classically high temperatures at 
which CVj = k for all modes, and the expression 
for 'YG reduces to the simple average of the 'Yj: 
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and in the low temperature limit where only 
continuum lattice vibrational states are excited, 
and there is no change in the relative weighting 
factors of various mode gammas. In this true T3 

d In eo 
region 'YG reduces to 'YG = - d In V where eo 
is the low temperature limit of the Debye tem­
perature. 

Validity of the original assumption of con­
stancy of Griineisen's gamma seemed well veri­
fied experimentally until recent years when im­
proved techniques of thermal expansion meas­
urement revealed large changes in 'YG which ap­
pear at low temperatures. 

SLATER' S GAMMA 

Historically, there has been a distinct lack of 
availability of values of individual mode gam­
mas, necessitating various approximations. The 
Slater gamma represents an attempt to obtain 
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directly, i.e. from the definition 'YJ = d In V ' 

a non-thermally determined gamma with which 

Table 1. High temperature values of 
Griineisen's Gamma and Slater's 

Gamma 

Material 

Si 
Ge 
Cu 
Ag 
Au 
Na 
AI 
NaCI 
KCl 
RbI 

Slater's Grlineisen's 
Gamma Gamma 

2·5 0'44 
H 0'72 
2-6 2'0 
2-8 2-4 
2-9 3'0 
1'5 1-14 
2-3 2-34 
2'7 1'55 
2'2 1'47 
2-6 1'50 

one could compare the value of the Griineisen 
constant. The only experimental data available at 
that time was the extensive set of measurements 
of volume vs. pressure by Bridgman from which 
one could obtain in the bulk modulus and its 
pressure derivative. 

Referring to Fig. 1, we see that the frequency 
of any particular normal mode j in the non-dis­
persive region of the spectrum is given by WJ 

= kJv where kJ is the mode wave vector and v 
the slope of the linear part of the dispersion curve 
equal to the velocity of a sound wave of the 
same mode type. The assumption was made that 
the solid could be treated as an isotropic elastic 
medium whence it was possible to obtain ex­
pressions for the velocity of longitudinal and 
transverse waves in terms of the bulk modulus, 
the density, and Poisson's ratio as follows :(1) 
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= J[ 3(1 - a)Bs ] 
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Vr = J[3(1 - 2a)Bs] , 
2g(1 + a) 

where a is Poisson's ratio, and e the density of 
the material. If Poisson's ratio is assumed in­
dependent of volume, the result appears: 

YL = Yr = 
1 din Bs 
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